55 research outputs found

    Intrinsically disordered energy landscapes.

    Get PDF
    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.The authors thank Prof. Jane Clarke, Dr. Chris Whittleston, Dr. Joanne Carr, Dr. Iskra Staneva and Dr. David de Sancho for helpful discussions. Y.C. and A.J.B. acknowledge funding from the EPSRC grant number EP/I001352/1, D.C. gratefully acknowledges the Cambridge Commonwealth European and International Trust for financial support and D.J.W. the ERC for an Advanced Grant.This is the final version. It was first published by NPG at http://www.nature.com/srep/2015/150522/srep10386/full/srep10386.html?WT.ec_id=SREP-639%2C638-20150526#abstract

    Crucial role of nonspecific interactions in amyloid nucleation.

    Get PDF
    Protein oligomers have been implicated as toxic agents in a wide range of amyloid-related diseases. However, it has remained unsolved whether the oligomers are a necessary step in the formation of amyloid fibrils or just a dangerous byproduct. Analogously, it has not been resolved if the amyloid nucleation process is a classical one-step nucleation process or a two-step process involving prenucleation clusters. We use coarse-grained computer simulations to study the effect of nonspecific attractions between peptides on the primary nucleation process underlying amyloid fibrillization. We find that, for peptides that do not attract, the classical one-step nucleation mechanism is possible but only at nonphysiologically high peptide concentrations. At low peptide concentrations, which mimic the physiologically relevant regime, attractive interpeptide interactions are essential for fibril formation. Nucleation then inevitably takes place through a two-step mechanism involving prefibrillar oligomers. We show that oligomers not only help peptides meet each other but also, create an environment that facilitates the conversion of monomers into the β-sheet-rich form characteristic of fibrils. Nucleation typically does not proceed through the most prevalent oligomers but through an oligomer size that is only observed in rare fluctuations, which is why such aggregates might be hard to capture experimentally. Finally, we find that the nucleation of amyloid fibrils cannot be described by classical nucleation theory: in the two-step mechanism, the critical nucleus size increases with increases in both concentration and interpeptide interactions, which is in direct contrast with predictions from classical nucleation theory.This is the accepted manuscript. The final published version is available from PNAS at http://www.pnas.org/content/111/50/17869.abstract

    NR3E receptors in cnidarians : a new family of steroid receptor relatives extends the possible mechanisms for ligand binding

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Journal of Steroid Biochemistry and Molecular Biology 184 (2018): 11-19, doi:10.1016/j.jsbmb.2018.06.014.Steroid hormone receptors are important regulators of development and physiology in bilaterian animals, but the role of steroid signaling in cnidarians has been contentious. Cnidarians produce steroids, including A-ring aromatic steroids with a side-chain, but these are probably made through pathways different than the one used by vertebrates to make their A-ring aromatic steroids. Here we present comparative genomic analyses indicating the presence of a previously undescribed nuclear receptor family within medusozoan cnidarians, that we propose to call NR3E. This family predates the diversification of ERR/ER/SR in bilaterians, indicating that the first NR3 evolved in the common ancestor of the placozoan and cnidarian-bilaterian with lineage-specific loss in the anthozoans, even though multiple species in this lineage have been shown to produce aromatic steroids, whose function remain unclear. We discovered serendipitously that a cytoplasmic factor within epidermal cells of transgenic Hydra vulgaris can trigger the nuclear translocation of heterologously expressed human ERα. This led us to hypothesize that aromatic steroids may also be present in the medusozoan cnidarian lineage, which includes Hydra, and may explain the translocation of human ERα. Docking experiments with paraestrol A, a cnidarian A-ring aromatic steroid, into the ligand-binding pocket of Hydra NR3E indicates that, if an aromatic steroid is indeed the true ligand, which remains to be demonstrated, it would bind to the pocket through a partially distinct mechanism from the manner in which estradiol binds to vertebrate ER.KK is supported by grant from Japan Society for the Promotion of Science (JSPS 17K07420). I.M.L.B and Y.C. acknowledge the support and the use of resources of the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INBS-05 and of Instruct-ERIC. AMR was supported by NIH Award R15GM114740. AMT was supported by an Internal Research and Development Award from the Woods Hole Oceanographic Institution

    A structural signature motif enlightens the origin and diversification of nuclear receptors

    Get PDF
    Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the alpha-helix, called pi-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the pi-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the pi-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the pi-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the pi-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the pi-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors

    Agrégation des peptides et protéines amyloïdes par simulations numériques

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    The Coarse-Grained OPEP Force Field for Non-Amyloid and Amyloid Proteins

    No full text
    International audienceno abstrac

    Replica Exchange Molecular Dynamics Simulations of Coarse-grained Proteins in Implicit Solvent

    No full text
    Current approaches aimed at determining the free energy surface of all-atom medium-size proteins in explicit solvent are slow and are not sufficient to converge to equilibrium properties. To ensure a proper sampling of the configurational space, it is preferable to use reduced representations such as implicit solvent and/or coarse-grained protein models, which are much lighter computationally. Each model must be verified, however, to ensure that it can recover experimental structures and thermodynamics. Here we test the coarse-grained implicit solvent OPEP model with replica exchange molecular dynamics (REMD) on six peptides ranging in length from 10 to 28 residues: two alanine-based peptides, the second!-hairpin from protein G, the Trp-cage and zinc-finger motif, and a dimer of a coiled coil peptide. We show that REMD-OPEP recovers the proper thermodynamics of the systems studied, with accurate structural description of the!-hairpin and Trp-cage peptides (within 1-2 Å from experiments). The light computational burden of REMD-OPEP, which enables us to generate many hundred nanoseconds at each temperature and fully assess convergence to equilibrium ensemble, opens the door to the determination of the free energy surface of larger proteins and assemblies. I
    corecore